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COMPLEX 

Abstract - The current state of the art of a modelling and dynamic simulation system for complex chemical and 
biochemical processes is discussed. Process modelling activity involves modelling a physical plant and external 
tasks imposed on the plant, and details of both aspects are discussed. Typical software structure is concerned with 
a model builder, result analyser, translator, solution methods, model library and external software interface. Some 
of them are explained in moderate depth. Recent progress of functionality and numerical methods is presented. Num- 
erical methods incorporating symbolic and structural techniques improve accuracy and efficiency. In order to il- 
lustrate benefits of employing dynamic simulation tools, one typical chemical process consisting of a mixing tank, 
tubular reactor and gas absorber is chosen and dynamic simulation is carried out. Taking into account the work in 
this paper, some suggestions for future development of a unified framework of a modelling package are made. 
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I N T R O D U C T I O N  

Dynamic simulation is the activity of analysing and predi- 
cting the time transient behaviour of the physical process of 
interest that is usually described in terms of mathematical e- 
quations. In the chemical process industry, dynamic simulation 
serves an important role from the early stages of process design 
to plant commissioning and operation. 

For example, in the design of control systems of a given 
chemical process with the collaboration of process and con- 
trol engineers, many problems arise since chemical engineers 
are usually concerned with design issues reflecting steady 
state conditions. On the other hand, control engineers consider 
dynamic behaviour that is usually based on rough and qual- 
itative knowledge. This might lead to an improper design of 
control systems. Even for the case of revamping the control 
system performing unsatisfactorily, it is not surprising that 
the system is modified according to the observations made in 
the startup or various state of operations. This procedure is no 
more acceptable if the decision on a certain process concept 
hinges on the outcome of the control. From this example, we 
conclude that the chemical engineer should have a better un- 
derstanding of the dynamic response of the system of inter- 
est for better design and many other applications. In general, 
applications of dynamic simulation include the synthesis and 
analysis of chemical process control structure, startup and shut- 
down of the plant, safety assessments, optimisation and op- 
erator training facilities [Wozny and Jeromin, 1994]. 

In order to achieve a certain goal from dynamic simula- 
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tion, two activities are mainly involved: building a well-pos- 
ed mathematical model and a solution method to deal with it. 
However, this task is in many cases quite difficult or almost 
impossible for a non-expert and if not the case, very time con- 
suming. Process modelling tools provide a user with a high 
level declarative language to build mathematical models and 
support reliable solution methods associated with them. The 
range of what is both desirable and practically feasible in pro- 
cess modelling has been expanding significantly in recent years. 
This trend is partly due to the realisation of the potential bene- 
fits of increased modelling realism and partly to rapid advan- 
ces in computer hardware and numerical software. 

Considering the increasing importance of dynamic simula- 
tion and tools to perform such activities, this paper discusses 
some of the significant issues concerned with such modelling 
tools for dynamic simulation. This is then followed by a brief 
description of the underlying numerical methods and relevant 
techniques such as symbolic and structural manipulation. In 
order to illustrate the capability and flexibility of modelling 
packages for dynamic simulation, one typical chemical process 
consisting of  a mixing tank, tubular reaction and gas absorber 
is chosen and dynamic simulation is performed. Finally, bas- 
ed on the discussion made here, some suggestions for future 
development are given. 

PROCESS M O D E L L I N G  OF C H E M I C A L  
PROCESSES 

Mathematical modelling describes a given process in terms of 
mathematical expressions. This activity is usually involved with 
conservation rules, such as mass and energy balances, and other 
relations regarding physical properties and connectivity of dif- 
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ferent unit operations. It is also accompanied by intrinsic dis- 
continuous behaviour of a physical system. This, in fact, de- 
fines the activity of process modelling in a traditional sense. 
However, the dynamic response of a physical system is decid- 
ed not only by the intrinsic behaviour of a physical system, 
but also by external actions imposed by a controller or an op- 
erator. It is therefore concluded that process modelling for dy- 
namic simulation should include both a physical system and 
external action associated with the operation of the process. 
1. Modelling a Physical System 

It has long been recognised that a natural mathematical 
description of the transient behaviour of lumped parameter 
processes is in terms of mixed systems of ordinary differen- 
tial and algebraic equations (DAEs) [Marquardt, 1992]. Exam- 
ples include a perfect mixing tank, continuous stirred tank reac- 
tor, tray columns etc. It is a fact that lumped parameter pro- 
cesses result from over-simplification of a given system. For 
instance, for the sake of simplification, a perfect mixing condi- 
tion is usually introduced to model a mixing tank. It is, how- 
ever, obvious that the behaviour of a mixing tank is far from 
perfect mixing, especially for an industrial application. Instead, 
the mathematical description of such a process in terms of a dis- 
persion model shows more accurate behaviour of the system. 

Apart from lumped parameter processes, a significant num- 
ber of unit operations in chemical and biochemical processes 
take place in distributed parameter systems in which prop- 
erties vary with respect to one or more space dimensions as 
well as time. Examples include packed bed tubular reactors, 
packed bed absorption, adsorption and packed distillation col- 
umn etc. In other types of unit operations, some of the prop- 
erties of the material are characterised by probability densi- 
ty functions instead of single scalar values. Examples inclu- 
de crystallisation units [Pantelides and Oh, 1996] and polym- 
erisation reactors, in which the size of the crystals and the 
length of the polymer chains, respectively, are described in 
terms of distribution functions. The form of the latter may 
also vary with both time and spatial position. In fact, most 
complex processes typically involve a combination of both dis- 
tributed and lumped parameter unit operations. The mathe- 
matical description of distributed unit operation models usu- 
ally involves partial differential equations (PDEs) express- 
ing the physical laws of conservation of mass, energy and mo- 
mentum. In addition to these, models may involve algebraic 
relations that characterise phenomena, such as phase equili- 
bria, which operate on much smaller time scales than those 
described by PDEs. Algebraic equations (AEs) may also be 
used to express relationships between variables, such as the 
definition of enthalpies in terms of temperature, pressure and 
composition. Finally, population balances [Ramkrishna, 1985] 
carried out on systems involving properties characterised by 
probability distributions very often lead to the introduction of 
integral terms in some of the equations. Overall, then, we are 
faced with mixed systems of integral, partial differential and 
algebraic equations (IPDAEs). 

The effects of uncertainty on process design and opera- 
tion have been receiving substantial attention in recent years, 
and effective techniques for managing it are beginning to e- 
merge [Grossmann and Straub, 1991]. A stochastic description 
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of a physical system can arise if model parameters of a de- 
terministic model are regarded as stochastically distributed. 
This leads to the inclusion of distribution in engineering mod- 
els and can be applied for bubble column, particle size dis- 
tribution in a solid handling process, crystallisation and cat- 
alytic activity, deactivation of catalytic sites etc, For transport 
processes in multiphase systems a stochastically based model, 
using a technique called spatial averaging or volume averaging, 
can provide new insights into the origin of the constitutive e- 
quations for fluxes and into the dependence of transport coef- 
ficients. This can result in a better correlation of data [Hofmann, 
1988]. In batch processes, stochastic variability typically arises 
from small variations in initial conditions (e.g., feed stock 
composition and temperature) and operating procedures, as 
well as from equipment failures and other unexpected reduc- 
tions in resource availability and noise in the measurements 
used for monitoring and control purpose [Watzdorf et al., 1994]. 
Beyond the purely technical level, uncertainty is also intro- 
duced by the unpredicted nature of the production demands 
imposed on a given multipurpose batch plant. All such stochas- 
tic behaviour can usually be modelled using a certain num- 
ber of probability distributions; e.g. uniform, triangular, normal, 
etc. [Kampen, 1981]. 

Complexity increases when a mathematical description is 
coupled with intrinsic discontinuity of a physical system. Al- 
though in their simplest form, models for unit operations 
are described in terms of continuous operations, many such 
models also involve one or more discontinuities. These typ- 
ically arise from thermodynamic (e.g. phase) or flow (e.g. 
from laminar to turbulent regime) transitions, or from irregu- 
larities in the geometry of process vessels (e.g. overflow pipes 
or weirs) [Barton and Pantelides, 1994]. 
2. Modelling Operations 

The procedure employed for the operation of process plants 
has traditionally been considered to be outside the scope of 
process modelling, being perhaps more relevant to real-time 
control systems which provide facilities for expressing and im- 
plementing them. Considering that one of the main purposes 
of  simulation activities is to achieve desirable process objec- 
tives, a plant and an operating strategy must be considered as 
two equally important facets of process modelling. Along with 
the intrinsic discrete characteristics of a processing system, 
most chemical unit operations experience external actions that 
lead to an introduction of discrete events. From the viewpoint 
of process modelling, an operating procedure comprises a set 
of actions that effect certain discrete changes in the underly- 
ing model of the physical behaviour. For instance, many com- 
puter control actions do indeed correspond to discrete changes 
in the values of the input variables. Further complications are 
introducing a quantity of a certain reactant in a reactor, or re- 
setting the integral error of a proportional/integral controller 
to zero. More severe discrete actions that are faced in con- 
ventional processes are probably startup and shutdown pro- 
cedures of the plant. During startup and shutdown, parallel 
or sequential unit operations take place in the process; this even- 
tually causes frequent discrete events in the process. Anoth- 
er example of experiencing frequent discrete events is period- 
ic processes such as pressure swing adsorption and thermal 
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swing adsorptive reaction [Oh and Jang, 1998; Oh ctal.,  1998]. 
In pressure swing adsorption pr(w_,csses, the pressure at the feed 
end and product end change drastically according the sequence 
of cycling steps. Other variables that are dependent on the pres- 
sure change accordingly. Of course, certain actions in an op- 
erating procedure will be performed only under certain circum- 
stances (e.g. cmergency handling). Overall, the model of the 
operating procedure must also determine whether each action 
actually takes place and its precise timing. Detailed dynamic 
modelling and simulation of a batch operation is more com- 
plicated than a conventional continuous process because of 
the need to model not only the physical behaviour of indi- 
vidual units, but also the complex sets of discrete control ac- 
tions that are imposed on them, and the equally complex log- 
ic involved in co-ordinating their operation [Park et al., 1996]. 
The degree of discontinuity increases in the following order: 

a. purely continuous process 
b. continuous pi'ocess with intrinsic discrete behaviour of 

a process 
c. continuous process with digital control 
d. startup and shutdown of a continuous process 
e. periodic process 
f. batch process 

One of the prime motivations for developing dynamic models 
and using dynamic simulation is the accurate analysis of the ef- 
fects of external control actions and disturbances imposed on 
the physical system; therefore, modelling external forces should 
be an integral part of the modelling activities of a physical sys- 
tem for dynamic simulation. 

PROCESS M O D E L L I N G  T O O L S  IN 
C H E M I C A L  E N G I N E E R I N G  

As we have discussed, the mathematical description of a 
chemical process is a mixed set of IPDAEs. Furthermore, re- 
levant discrete events, such as digital control actions and start- 
up and shutdown procedures, make modelling and dynamic 
simulation very complicated. In addition, the sheer size of ma- 
thematical equations (usually tens of thousands) resulting from 
process modelling and high non-linearity is another source 
of difficulty in performing dynamic simulation successfully. 
From the discussion, it is clear that constructing a complex 
mathematical model from scratch and performing dynamic 
simulation using in-house solution methods is almost an un- 
attainable task; and even if this is the case, a substantial a- 
mount of time is necessary. 

In this respect, dynamic simulation tools enable a user to tack- 
le such complicated problems without any deep knowledge of 
numerical methods and computer technology. This section con- 
tributes to the ~)ftware structure of such a simulation tool and 
the progress it has made up to now. 
1. Software Structure 

A software package for dynamic simulation is comprised 
of a number of elements. Fig. 1 illustrates the typical software 
structure of  such packages. It should be understood that the 
details of the software structure of a dynamic simulation tool 
may be different between developers; Fig. 1 presents a repre- 
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Fig. 1. Software structure of a dynamic simulation package. 

sentative basic scheme of such software. 
1-1. Model Builder 

The user interface consists of a model builder and a result 
analyser. The model builder provides a user with the means 
to map physical processes into mathematical equations. The 
mathematical model of a given process can mainly be con- 
structed by a collection of built-in models from the library of 
a simulation package. Many commercial dynamic simulation 
packages (e.g. HYSYS [Hyprotech, 1995]) adopt the fi~t ap- 
proach and usually provide a user-friendly graphical editor to 
perform the modelling procedure rather easily. A mathemat- 
ical model of complicated processes constructed in this man- 
ner allows well-posedness and, coupled with appropriate nu- 
merical methods, a user can easily obtain satisfactory results. 
However, it is argued that even for the same process, a ma- 
thematical description of a dynamic model can be different 
according to their applications. For example, a dynamic mod- 
el for design purposes is usually much more detailed than for 
operator training purposes. Building a library to encompass all 
such applications is in fact very time consuming or even im- 
possible. 

For the second approach, a high-level declarative modelling 
language is utilised during the modelling procedure. Since a 
user is totally responsible for building a mathematical model 
based on conservation laws, reaction kinetics, phase equilibria, 
etc.; the well-posedness of the resulting mathematical model 
should be carefully checked. Despite the fact that a user (es- 
pecially non-expert user) sometimes faces difficulties in con- 
structing a mathematical model, this approach guarantees great 
flexibility, which allows research on the analysis and devel- 
opment of new processes and various applications. This flex- 
ibility is, however, obtained at the expense of a more compli- 
cated software structure and a very reliable and efficient solu- 
tion code is necessitated..Speedup [Aspen Technology, 1994] 
can be regarded as a typical example to apply such a meth- 
odology. Some efforts are made to overcome the drawbacks of 
such approaches (i.e., inflexibility from the former and diffi- 
culty to construct a well-posed model). The DIVA modelling 
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package [Kroner et al., 1990] employs a hybrid model build- 
er supporting two levels called "simulation expert" and "mod- 
elling expert". Through the simulation expert user interface, 
the simulation expert applies the graphical simulation model 
editor to set up the flowsheet and draw the topology of the 
plant. From a list of graphical representations of process units 
contained in the model library the user selects the desired 
process. In the modelling expert, users build their own math- 
ematical models, problem definitions and simulation data. They 
are stored in a database and used on their own or invoked 
through the simulation expert. 
1-2. Result Analyser 

The dynamic simulation of a large system over a long 
period of time produces large amounts of result data. The 
task of actually collecting and physically archiving results pro- 
duced by a complex simulation can be quite complex and com- 
putationally demanding. The results can either be stored in 
the form of ASCII files or displayed to the user during sim- 
ulation or after it. When a complex simulation over a long 
time period is executed, the size of the ASCII file is enor- 
mous, and the time needed to write data into the file is not 
negligible. Taking these considerations into account, all data 
from the simulation is stored in a binary file, in which the 
size and computational demand is comparably reduced. This 
can also be converted into ASCII code as required. Visual- 
isation in terms of 2D or 3D is inevitable for complicated 
dynamic simulation since it is unthinkable to analyse huge 
results only by means of ASCII data. Off-line visualisation 
(after the simulation) is a normal practice, but ran-time graph- 
ical demonstration is a desirable aspect for many other appli- 
cations such as operator training systems and on-line monitor- 
ing. In many cases, the analysis of the result of a simulation 
in order to understand the behaviour of a physical system in- 
volves only a number of variables. For instance, in order to 
characterise a catalytic reactor system, data for the reactor tem- 
perature and concentration are often sufficient. For a large 
system, for which the time wasted to deal with unnecessary 
data (e.g. storage, retrieving) is not negligible, selective mon- 
itoring and saving of variables or time duration of interest is 
advisable. 
1-3. Translator 

The structure and functionality of a translator is heavily 
influenced by the software structure of a modelling system. 
In the case of building mathematical models in terms of a 
combination of built-in library, the analysis of the model is 
omitted and only the parameters supplied by a user are check- 
ed and saved accordingly. However, when a user is fully re- 
sponsible for constructing a mathematical model, the trans- 
lator performs two major tasks : analysis and validation (whe- 
ther the input is legal, meaningful and semantically correct) 
of the input file containing the description of the process mod- 
el as well as a simulation problem coded in a given user in- 
terface; and the generation of an internal model representa- 
tion [Fisher and LeBlanc, 1988]. 

For the latter application, internal model representation is 
usually described in terms of a high level programming lan- 
guage such as Fortran (e.g. Speedup [Aspen Technology, 1994]) 
or C, which is then compiled and linked with numerical 
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methods and physical property routines. In searching for the 
benefits of current developments of computer technology, the 
analysed input is sometimes translated into abstract data types 
such as binary trees, linked lists, etc. Unlike the former, this 
approach makes much use of modem technology in computer 
science and permits a very fast and efficient process during 
modelling and simulation activities. 
1-4. Solution Methods 

Since a general mathematical description of a complex chem- 
ical plant is a mixed set of IPDAEs accompanied by consid- 
erable discontinuity, a sophisticated dynamic simulation pack- 
age should include reliable, and at the same time, efficient nu- 
merical solution codes to tackle such problems. 

Rigorous mathematical equations arising in chemical pro- 
cesses usually include conservation laws, reaction and adsorp- 
tion equations, phase equilibria and connectivity, since reac- 
tion and adsorption contain exponential terms which lead to 
highly non-linear systems. Numerical solution codes incorpo- 
rating symbolic and structural techniques are very demanding. 
The number of equations of a practical system reaches tens 
of thousands and the matrix representing such system shows 
a very sparse pattem. Exploiting sparse techniques [Duff, 1980] 
is very beneficial in saving computational time and hard- 
ware resources. Considering that the role of numerical solu- 
tion methods is of paramount significance, we discuss this is- 
sue in a separate section (section 4. Solution Methods) in more 
detail. 
1-5. Interface to Extemal Software 

As will be discussed later, model-based dynamic simulation 
~tn lye applied to various fields in process systems engineering. 
Dynamic optimisation, operator Waining system, computer aided 
control system design and on-line optimisation can be regarded 
as typical examples of the application of dynamic simulation. 

In order to make those activities possible, simulation pack- 
ages should be equipped with the functionality to communi- 
cate data to and fro between the simulation package and oth- 
er application software. For instance, an operator training sys- 
tem does not necessarily involve numerical solvers or a mod- 
el builder. Instead, a mathematical model concerning the pro- 
cess of interest is carded out in a simulation package and at 
every reporting time, simulation results are passed to the core 
engine of the operator training system [Cho et al., 1996]. And 
then the transferred data are analysed and displayed through 
the user interface of the operator training system. When in- 
tervention from a user is required (e.g. changing some ope- 
rating conditions), the operator training system sends the sim- 
ulation package a message to interrupt the present simula- 
tion task. Simulation resumes, reflecting new data from the 
operator training system. For the sake of reliable application, 
this activity should be performed in real time and provide a 
means to synchronise both processes. 
2. Recent Progress 

There has been significant progress in process modelling 
tools for simulation during the last decade. It is now a com- 
mon practice to use simulation tools for design, revamping, 
predicting dynamic response and determining optimal operat- 
ing conditions. Extensive review of software packages to sup- 
port such tasks is given by Marquardt [1992] and Wozny and 
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Jeromin [1994]. Because it is not the aim of this article to 
review the functionality and usage of individual packages, the 
paper concentrates on technical breakthroughs in the field of 
modelling package developments. 
2-1. Distributed Process Modelling 

Currently available general-purpose software for the model- 
ling and simulation of chemical and biochemical processes is 
primarily intended for lumped parameter systems [Marquardt, 
1992]. Several packages, such as Speedup [Aspen Technology, 
1994], DIVA [Kroner et at., 1990], ASCEND [Piela et at., 1991] 
and OMOLA [Anderson, 1991; Mattsson and Anderson, 1992], 
provide high level declarative modelling languages that al- 
low mathematical statements of the transient behaviour of in- 
dividual unit operations in terms of a mixed set of DAEs. In 
conjunction with efficiently dealing with the modelling activ- 
ity of complex chemical processes, some packages adopt an 
object-oriented paradigm which is gaining increased popularity. 

However, in such modelling packages, distributed process- 
es are currently modelled by manual discretisation of the dis- 
tributed dimensions, which reduces the mathematical system 
to a set of DAE with respect to time. This process is both dif- 
ficult and error-prone, especially when advanced discretisation 
techniques are to be applied, and a high level of mathematical 
knowledge and skill is required to perform it in a satisfactory 
manner. Along with increasing requirements from the chem- 
ical industry to pursue more rigorous modelling, much atten- 
tion has been focused on direct modelling of distributed pro- 
cesses in recent years. Two important issues are considered: 
the formalisms for the construction of distributed models in 
the context of  modclling languagc and the underlying nu- 
merical solution methods for resulting mathematical equations. 
Since the numerical methods for distributed processing units 
will be discussed in section 4, only the formalism is consider- 
ed in this part. 

The variation of the conditions of a distributed parameter 
system may be described as distribution over one or more 
space dimensions, molecular weight, panicle size, etc. The con- 
ditions within a model are characterised by variables and e- 
quations, some of which will be distributed over given do- 
mains. It should, however, be recogniscd that different varia- 
bles and equations within the same model may have different 
degrees of distribution. They are three underlying key ele- 
ments that are indispensable for declaring distributed param- 
eter systems in a modelling language. Formal mechanisms 
that enable those concepts to be described in the language 
should be provided. The other issue is the formal syntax re- 
lated with the introduction of partial differentiation and in- 
tegration operators. Automatic solution methods should be in- 
volved for a user to solve the problem without any extensive 
knowledge of advanced numerical mathematics. Despite di- 
rect distributed process modelling and automatic solution pro- 
cedure being of paramount importance, to our best knowl- 
edge, only a very limited number of modelling packages are 
equipped with the concepts mentioned abovc. One such mod- 
elling package permitting direct modelling of distributed pro- 
cesses is thc gPROMS package [Oh, 1995; Oh and Pantelides, 
1996] in which variation is distributed over multi-dimensional 
fields can be constructed and numerical methods for IPDAEs 

are automatically employed. The application of the package 
will be demonstrated in section 5. 
2-2. Handling Complexity 

Due to the complexity of chemical processes, it is often 
difficult to handle the whole modelling task simultaneously. 
The re-usability of any models that are developed and pro- 
ven at substantial cost is also of significance. Considering these 
issues, hierarchical mechanisms that enable the user to con- 
struct a complex model from simpler components are intro- 
duced. The basic principle of these mechanisms is to repeat- 
edly sub-divide the modelling problem of interest until a suf- 
ficiently simple level of the model is reached. In the chem- 
ical industry, such models usually correspond to elementary 
equipment items for unit operations (e.g. pump, valve) or parts 
thereof (e.g. distillation column trays, column overhead sys- 
tem). Because of its complexity, the activity of modelling a 
chemical processing system usually proceeds in three steps: 

a. partitioning of the system into elementary sub-systems 
b. analysing each sub-system 
c. synthesising the system from the analysed sub-systems 

by means of connectivity 

Re-usability can also be enhanced through the use of inheri- 
tance. The concept of inheritance was first popularised by the 
object-oriented programming language. Through inheritance, 
a new model may be declared as an extension or restriction 
of one or more previously declared models. A model that is 
directly descended from another model contains all the in- 
formation associated with the parent, plus any new informa- 
tion declared within the model itself. In connection with in- 
heritance hierarchy, models may therefore be developed in a 
hierarchical manner through a series of intermediate stages 
of increasing complexity. It is also a powerful tool for avoid- 
ing the repetition of common information during model de- 
velopment. Careful development of an inheritance hierarchy 
will ensure that information common to several models need 
only be specified once. In addition, if this common informa- 
tion is declared correctly in the first place, the possibility of 
errors occurring during the repeated specification of the same 
information is eliminated. 
2-3. Extend Functionality 

As discussed in section 3.1, there are many applications 
from dynamic simulation. The model-based approach has gain- 
ed more and more popularity in process systems engineering 
since other applications can benefit from a transparent model. 
Optimisation (either for steady state or dynamic state) is the 
most well known example for this. Even if it should be pos- 
sible to interface a dynamic simulator with an cxtcmal software 
package for optimisation, it is certainly advantageous to carry 
out two activities within the same framework. Interfacing het- 
erogeneous software packages (in this case dynamic simulator 
and optimiser) in terms of data transfer causes the loss of much 
important information such as of a symbolic Jacobian ma- 
trix, occurrence matrix, block decomposition information, etc. 
This is particularly tree when detailed information is neces- 
sitated for reliable and efficient optimisation. Within the same 
framework, dynamic optimisation utilises the model and the 
results developed during dynamic simulation task. In addition, 
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objective function and system constraints are coded using de- 
scription language prepared by the modelling system. Many 
commercial modelling tools support steady state optimisation 
within the ~me  framework of simulation. Examples include 
Speedup [Aspen Technology, 1994], PRO/II [Simulation Sci- 
ence, 1995], HYSYS [Hyprotceh, 1995], etc. Dynamic optimisa- 
tion in this context is regarded as in its early stage. Only a 
limited number of packages support dynamic optimisation 
utilising dynamic simulation. 
2-4. General Purpose Simulation Packages 

DIVA has been developed at the University of Stuttgart bas- 
ed on the concepts for dynamic simulation in the domain of 
chemical engineering. A block-oriented flowsheet representa- 
tion ks used to d~seribe the topology of a plant. Single process 
units are interconnected by flow of energy, mass and informa- 
tion. The topological structure and the model equations of all 
process units, chosen from libraries containing model equa- 
tions and property correlation, s are combined by the plant mod- 
el process to set up the equation system of the plant. Nu- 
merical algorithms enhanced by sparse matrix techniques si- 
multaneously solve the DAE systems. A knowledge-based user 
interface for interactive problem definition and controlling 
the simulation has been implemented. 

Speedup package allows specification of steady state simu- 
lation, steady state optimisation and dynamic simulation in a 
unified language specially designed for process engineering 
applications. Through the high level declarative language, ma- 
thematical models are described in terms of sets of variables 
and the ordinary differential and algebraic equations that re- 
late them. Models of more complex unit operations (such as 
distillation columns), called "macros", may be formed from 
instances of the basic models. Finally, a model of the entire 
plant may be formed by combining instances of both models 
and macros into a flowsheet. Solution of the underlying ma- 
thematical problem is achieved through the use of powerful 
techniques of symbolic and numerical computation. The sym- 
bolic information demonstrates significant improvements in 
robustness and efficiency over algorithms relying .purely on 
numerical information. Speedup offers an interactive envi- 
ronment for process flowsheeting, in which the user can easi- 
ly create, store, retrieve and modify one or more problems, 
all of which are stored simultaneously in a specially design- 
ed database file. It also handles a user's requests for help and 
diagnostic information, the display, storage and retrieval of 
simulation results, and other accounting and house keeping 
tasks. 

OMOLA builds on the hierarchical sub-model decomposi- 
tion with the introduction of an object oriented modelling frame- 
work. An important feature is the ability to use inheritance 
in the declaration of both model types and complex connec- 
tion mechanisms. The design of OMOLA pays particular at- 
tention to the issue of model parameterisation. The use of 
parameters extends the model type concept by enabling a mod- 
el type to describe the behaviour of a wide range of similar, 
albeit not identical, components. The values assigned to the 
parameters of an individual model instance then customise 
it to its application. OMOLA also introduces the representa- 
tion of model behaviour as a number of different mathemat- 
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ical realisations (such as DAEs, transfer functions, and state 
space descriptions), rather than a single realisation [Barton, 
1992]. The application of the concepts embodied in the lan- 
guage has been demonstrated through the development of the 
continuous model of a complete chemical process [Nilsson, 
1989]. 

ASCEND is a language for the declaration of continuous 
mathematical models, particularly models of chemical processes. 
The framework of software is deeply influenced by the object- 
oriented paradigm. A complex model type is constructed from 
primitive types using a range of language operators such as 
IS_REFINED_TO, ARE_LIKE and ARE_THE_SAME. The 
model eventually developed should represent a well-posed ma- 
thematical problem that can then be submitted for solution to 
a suitable numerical method. Both hierarchical sub-model de- 
composition and model inheritance are supported by language 
operators. 

MODEL.LA [Stephanopoulos et al., 1990a,b] is present- 
ed as a language suitable for the description of models to 
be used for the entire range of process engineering activities. 
The language is fully object-oriented and hierarchical sub- 
model decomposition is represented in five levels of ab- 
straction: plant, plant-section, augmented unit, unit and sub- 
unit. The language has been integrated with the DESIGN-KIT 
package [Stephanopoulos et al., 1987], an object-oriented en- 
vironment for computer-aided process engineering. An im- 
portant feature of MODEL.LA that distinguishes it from the 
other languages is the manner in which models of individ- 
ual unit operations are declared. All the other languages re- 
quire a basic unit operation model to be declared in terms of 
mathematical relationships between system variables. In con- 
trast, MODEL.LA only requires a declaration of the relation- 
ships between system variables (such as mass or energy bal- 
ances) and a set of assumptions concerning physical and chem- 
ical phenomena. The model executive can then automati- 
cally generate the correct mathematical relationships from 
the information. This approach has many advantages, includ- 
ing rigorous model documentation and consistency checking, 
and greater support for the inexperienced modeller, but may 
ultimately be restricted by the .scope of the knowledge base 
from which equations are automatically generated. In addi- 
tion, MODEL.LA introduces a framework for multifaceted 
modelling. This recognises the need to consider a process mod- 
el at several different levels of abstraction during the evolu- 
tion of  a design. A multifaceted model consists of  an arbi- 
trary number of facets that exchange and share information con- 
ceming the physical object under consideration. The facet used 
for a particular activity is determined by the level abstraction 
required [Barton, 1992]. 

SOLUTION METHODS 

A numerical solution method is the single most important 
element of a modelling package. The numerical solution code 
employed by a modelling package should be able to deal with 
highly non-linear IPDAEs accompanied by discrete events. This 
section discusses some functionality and desirable aspects 
of a computer code to support the solution of such systems. 
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Discretisation of Numerical integration 
non-temporal domains over time 

Fig. 2. Two phase solution procedure in the method of lines. 

1. Numerical Methods for IPDAEs & DAEs 
The solution of IPDAE systems is generally a difficult prob- 

lem. Changing a parameter or one of the boundary condi- 
tions may lead to completely different behaviour from that 
originally anticipated [Ames, 1992]. Furthermore, although 
some numerical methods can accurately solve a given IPDAE 
system, other numerical methods may be totally unable to do 
so. One of the mostly widely used methods is the method of 
lines [Schiesser, 1991]. A brief idea of the method is to dis- 
cretise a given IPDAE system with respect to spatial coor- 
dinates, which leads to DAEs. The family of the method of 
lines comprises collectively a number of finite difference, fin- 
ite element [Zienkiewicz, 1983] and weighted residual meth- 
ods [Finlayson, 1980] in which piece-wise local or global ap- 
proximation functions in the space dimensions are used to 
convert evolutionary IPDAE problems into initial value DAE 
problems. 

The advantage of this procedure is that sophisticated com- 
puter programs that permit fast and accurate integration of 
large sets of DAEs over time can be employed. In particular, 
integration codes based on backward differentiation formulae 
(e.g. DASSL [Petzold, 1982] and DASOLV [Jarvis and Pan- 
telides, 1992]) can solve stiff as well as non-stiff systems of 
equations. They utilise sophisticated algorithms for automat- 
ic step-size adjustment and integration order selection to main- 
tain a user-specified error tolerance. This whole procedure, 
using the method of lines followed by the application of DAE 
solver, is referred to as the two phases solution method and 
is depicted in Fig. 2. 

Finally, initialisation and re-initialisation of a given system 
triggered by starting simulation activity and discrete events 
facilitates the solution method for non-linear algebraic equa- 
tions (NAEs). Despite their simple appearance, the solution 
procedure for NAEs is probably one of the most difficult is- 
sues. This is particularly true at the very first initialisation 
step of time integration, for good estimates for the values of 
variables are not always available. Unfortunately, current tech- 
nology of the solution method for NAEs does not guarantee 
the convergence of a given problem from very poor initial 
guesses. Employing a quasi-Newton type algorithm and a pri- 
ori re-arrangement of the NAEs into block triangular form 
[Keeping, 1995], in many cases, improves reliability of the 
method. 
2. Detecting and Handling Discontinuity 

Except for some special cases, dynamic simulation of in- 
dustrial processes is hardly continuous. In the chemical in- 
dustry, all unit operations are involved with digital control or 
external actions imposed to it; consequently, the behaviour 
of the unit operations shows combined discrete and continu- 
ous characteristics. As already discussed, discontinuous behav- 

iour of a process model arises from intrinsic characteristics 
of the process or external actions imposed on the physical 
plant. It is therefore imperative to detect and handle such dis- 
continuities. 

Regardless of the reason for discontinuity, it can be cat- 
egorised into explicit and implicit discontinuity. In the for- 
mer, the exact time of occurrence is known a priori. Suppose 
an operator wants to turn a feed pump on 500 seconds after 
startup; the exact lcw_ation of this explicit event is given. How- 
ever, the exact time for a phase transition from liquid to va- 
pour in a distillation column is totally up to the state of a 
system, e.g. variation of temperature and pressure. One effi- 
cient way to seek for an exact location of this kind of prob- 
lem is that at the end of every successful time integration, 
all conditions which cause the di~ontinuity are checked. When 
the condition is changed from previous integration step (for 
instance, the Reynolds number is changed from 1800 to 25(X), 
then mathematical equations for fluid flow are also changed 
from laminar to turbulent), the integration step is reduced 
until a given tolerance is satisfied. This permits finding an 
exact location of discontinuity. The way of reducing the in- 
tegration step determines the efficiency of the method. 

The next issue is how to deal with discontinuity. Nowa- 
days, the majority of numerical codes for time integration em- 
ploy multi-step methods based on backward differentiation 
formulae [Gear, 1971]. This method involves some data cal- 
culated from previous integration and utilises them to obtain 
the present solution. However, at the point of discontinuity, 
all these data cannot be used for there is no clear relation- 
ship between the present and the past. A remedy for this prob- 
lem is the re-initialisation of a given system at the location 
of the discontinuity. It is normal practice to assume values of 
system variables are continuous across the boundary of each 
integration step except those causing the discontinuity. How- 
ever, discontinuity introduces new conditions and eliminates 
old conditions that are no more available for the system. Re- 
initialisation is now carried out with respect to a new system 
containing new conditions. This is then followed by time in- 
tegration. From the nature of time integration and re-initial- 
isation, frequent discrete events cause a very inefficient and in- 
accurate time integration (since we cannot use a multi-step 
method), and in the worst case, the numerical integration code 
multi-step methods cannot he used. 
3. Symbolic and Structural Information 

A modelling package for dynamic simulation employing 
a model-based approach usually handle tens of thousands of 
mathematical equations which combine stiff and non-stiff e- 
quations as well as highly non-linear equations. In spite of 
the recent progress in numerical mathematics, we experience 
many problems in tackling such a large system during a solu- 
tion procedure. As identified by Pantelides and Barton [1993], 
the source of such problems includes the inherently bad-posed, 
or those that cannot be solved using currently available tech- 
niques. Problems, which belong to the first category, are struc- 
tural singularity and numerical singularity, whereas high index 
belongs to the latter. The examples for the latter are the high- 
index problem and poor initial guesses. Some problems such 
as poor initial guesses and high-index problems are concerned 
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with numerical technology, but bad-posed and singularity prob- 
lems can be detected before numerical methods are employed. 

Structural information is a valuable means to detect the 
solvability of a given system. When the size of the matrix 
to represent the mathematical equations or its Jacobian ma- 
trix is n and the rank of the matrix is less than n, the matrix 
is referred to as a singular matrix. From its characteristics, a 
singularity can be categorised into numerical, structural and 
local singularity. Whereas numerical and local singularities 
should be tackled by numerical techniques, a structural sin- 
gularity can be treated differently. If a matrix is indeed structur- 
ally singular, only a sparsity pattern of the Jacobian matrix 
of a given system needs to be considered. A structural sin- 
gularity in large matrices can be detected very efficiently us- 
ing graph-theoretical algorithms for output assignment, in par- 
ticular one proposed by Duff [1980]. This methodology is 
also utilised to formulate triangular block decomposition to 
enhance numerical solution procedures and detect high-index 
problems. 

Whereas structural information is concerned with the sol- 
vability of a given system, symbolic techniques mainly pro- 
vide valuable information for solving a given problem effi- 
ciently during the numerical treatment phase. In dealing with 
mathematical equations such as NAEs, DAE and PDAEs, 
the Jacobian matrix of a given system should be solved. Espe- 
cially, when time integration of a large system is involved, 
fast convergence of the Jacobian matrix is essential. The con- 
ventional practice of calculating a Jacobian matrix is to ap- 
proximate it in terms of finite difference methods, and an 
approximate solution is then obtained. Because this calcu- 
lation demands a great deal of computational time, a Jacobi- 
an matrix is not usually calculated until divergence is faced. 
when the problem does not converge, lately calculated ap- 
proximate Jacobian is to be updated. This is error-prone and 
at the same time very time consuming. In this respect, exploit- 
ing symbolic treatment of the Jacobian matrix is very bene- 
ficial. Symbolic differentiation of a given system, which leads 
to a Jacobian matrix of the system, is executed and the result 
is utilised whenever required. During numerical treatment, 
for instance quasi-Newton methods, the exact Jacobian gain- 
ed from symbolic differentiation is calculated. This usually .guar- 
antees better convergence as well as fast calculation. 

I L L U S T R A T I V E  E X A M P L E  

This article identifies the benefits of employing a process 
modelling tool for dynamic simulation of complex chemical 
processes. It permits 

a. direct modelling of a complex physical plant including 
distributed processes, 

b. modelling external actions including the change of operat- 
ing conditions, 

c. automatic solution methods for resulting mathematical 
descriptions. 

In attempting to illustrate the benefits mentioned above, we 
introduce a process modelling tool, called gPROMS which 
is mainly for the modelling and dynamic simulation of com- 

Recycle 

Gas 
Aborter 

Mixing Tank Tubular Reactor 

Fig. 3. Fiowsheet of a mixer, tulmlar reactor and gas absorber. 

bined lump/distributed parameter processes accompanied by 
either continuous or combined discrete/continuous events. As 
already discussed, sophisticated numerical methods for DAEs 
and IPDAEs are provided and automatically invoked when- 
ever necessary. 

The target process, shown in Fig. 3, comprises a well-stirr- 
ed mixing tank, a tubular reactor and a gas absorption col- 
umn which leads to a combined lump and distributed process 
[Heydweiller et al., 1977]. The mathematical description of 
the well-stirred mixing tank is DAEs, whereas mathematical 
equations of  the tubular reactor and the gas absorption col- 
umn are parabolic and hyperbolic PDEs, respectively. As a re- 
sult, the system is described in terms of a mixed set of PDAEs. 
In conjunction with numerical solution procedures, modelling 
of such a process using a programming language is by no 
means a trivial task. The mathematical form of the resulting 
equations becomes different according to underlying approxi- 
mation methods. In order to perform this task successfully, 
deep knowledge of numerical mathematics Ls ~,sential. A high 
level declarative modelling language which allows direct mod- 
elling of lumped and distributed processes is provided and, 
in this case, a user's only responsibility is to describe the ma- 
thematical model using the language. The numerical method 
chosen by a user is automatically involved with the solution 
procedures. 

In order to demonstrate the capability of handling com- 
bined continuous/discrete events, operating conditions is also 
changed: i.e., at 40 dimensionless time after startup, the con- 
centration at the inlet of a mixer is increased by 20 %. This 
causes discontinuity to the process. Overall, simulation activ- 
ity is associated with time integration of the combined lump- 
ed and distributed parameter process accompanied by com- 
bined discrete and continuous events. 

The reactor carries out the gas-phase reaction 

A+B --~ 2C 

The reactor product enters the bottom of the countercurrent 
absorption column where C is partially absorbed in the liquid 
phase. The remaining gas is recycled to the mixer where it 
is combined with fresh feed. The dynamic response of this 
system is determined by simultaneously solving the ordinary 
differential equations describing the mixer, the parabolic dif- 
ferential equations for the tubular reactor and the hyperbolic 

May, 1998 



Framework of Dynamic Simulation for Complex Chemical Processes 239 

differential equations for the gas absorption column. 
These equations are shown below in dimensionless form. 

Because an isotherm process is assumed, only mass balance 
equations are considered here. 

mixing tank: 

d~? = K s [ r  V.e_(I+Kg)$7] i=A, B, C 
d r  

where 07(0 is the dimensionless concentration of compo- 
nent i in the mixing tank, 0[ the dimensionless concentration 
of component i in the feed stream and ~" the dimensionless 
concentration i of component i in the recycle. 

tubular reactor: 
Mass balance: 

oar a 2 r  

OaT =KI oa .~[2 
oa~, 
a2 +vi K2r CB 

v X ~ ( 0 ,  1), i : A ,  B, C 

Boundary conditions: 

1 ~ r  m 
Pe O~ - r  @,~,=0, i = A ,  B, C 

oar 
. . . .  0 @~,= 1, i = A ,  B, C 
oa;t 

where &E[0,  1] is the dimensionless axial position and z 
the dimensionless time, while r (Z, z) represents the dimen- 
sionless concentration of component i in the reactor and r 
the corresponding quantity in the reactor feed. The stoichiomet- 
ric coefficients used in the mass balance are v,~ = - 1 ; vs = - 1 ; 
Vc=+2 

gas absorber: 
Mass balance: 

oa~a _ K3 OagA oa r oa~. V ~ E ( 0 ,  1] 

Oa~B _ K3 ~ B  oar a~ v ~~  (o, ]] 

oa~c. = - K 3 ~ - - K 4 ( g c - K s O c )  V r  l] a r  

oa ~C _ Ka s oa OC K4 
oar a~ K7 (9c-K50c)  V ~ [0, 1) 

Boundary conditions: 

? , : e l  @~'=0,  i = A ,  B, C 

0 c = 0  @r B,C 

where 4 ~ [ 0 ,  1 ] is the dimensionless axial position of gas ab- 
sorber, ?, (4, z) and 0~ (4, z) the dimensionless concentrations in 
the gas and liquid phases, respectively and r the dimensionle.ss 
concentrations at the reactor exit. 

Figs. 4-6 demonstrate the concentration of component A 
in the tubular reactor, gas absorber and mixing tank, respec- 
tively. 

Transient behaviour of component A is shown in Fig. 4. 
A 20 % increase in the concentration of component A in the 
feed occurs at 40 dimensionless time. The concentration of 
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Fig. 4. Concentration profile of component A in reactor. 
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Fig. 5. Concentration profile of component A in gas absorber. 
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Fig. 6. Concentration profile of component A in mixing tank. 

component A rapidly changed near this point. As time in- 
tegration continues, the concentration of component A in the 
tubular reactor and gas absorber also changes (see Figs. 5-6). 
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C O N C L U D I N G  RE MA RK S AND FUTURE 
DIRECTIONS 

This paper reviews the current state of the art of modell- 
ing and dynamic simulation tools for complex chemical and 
biochemical processes. Process modelling of chemical pro- 
cesses includes both modelling a physical plant, which de- 
picts intrinsic behaviours, and modelling operation, which im- 
poses on the physical plant. Such modelling issues for a phy- 
sical plant as well as operations are discussed. The software 
structure and basic elements of a dynamic simulation package 
are examined. It typically consists of a user interface, trans- 
lator, solution methods, built-in mathematical model libraries 
and a result analysis system. Each element is examined in 
moderate depth. This is then followed by a consideration of 
the recent progress of a modelling tool. Main progress lies 
in distributed process modelling, handling complexities and 
extending functionality including steady state/dynamic opti- 
misation. Numerical methods to deal with a complicated pro- 
cess are discussed in detail. Since there is no universal nu- 
merical method to tackle a wide spectrum of problems arising 
in chemical engineering, various numerical methods based on 
sound mathematical principles should be considered. One ex- 
ample, which illustrates the typical characteristics of chem- 
ical processes, is chosen and dynamic simulation is carded 
out using the gPROMS modelling package. This demonstrates 
the benefits of the utilisation of the modelling package to deal 
with complicated chemical processes. 

Despite the fact that the recent progress of modelling tools 
allows a user to deal with a considerable number of compli- 
cated modelling and simulation problems, there are many out- 
standing problems to be resolved. Consequently, the final sec- 
tion concentrates on three areas which, we believe, are of a 
more strategic and fundamental nature. 
1. Unified Framework 

The possibility of performing various activities within the 
unified framework of a modelling tool is one of the main at- 
tractions of  an equation-oriented approach. In the equation- 
oriented approach, the behaviour of a physical plant and its 
external actions are expressed by mathematical descriptions. 
Once a well-posed mathematical model is developed, it is 
applicable for various applications by merely adding some 
conditions or modifying a part of equations according to the 
type of  applications. 

One important application is the unified work of steady 
state and dynamic simulation. Mathematically speaking, steady 
state is regarded as one trivial case of a dynamic state. To be 
more specific, a dynamic state of a given system becomes a 
steady state of the system when all time derivatives of the 
dynamic model are eliminated. However, traditional practice 
performs steady state and dynamic simulation separately, fa- 
cilitating different simulation software packages. Since there 
is no obvious relation between them in this practice, efforts 
and time made for steady state simulation are wasted and 
the same amount (or even more) of activity should be given 
for dynamic simulation. In the unified framework, the same 
mathematical model is used to describe both steady and dy- 
namic state behaviour of a given system. During the course 
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of a steady state simulation, the initial conditions of all time 
derivatives become zero and numerical integration of the sys- 
tem is not carried out. It is then followed by dynamic simula- 
tion with appropriate initial conditions of the same mathe- 
matical model within the unified framework of a modelling 
package. 

Optimisation for both the steady state and dynamic state is 
an important ingredicnt of process design. General formula- 
tion of an optimisation problem consists of an objective func- 
tion, equality and non-equality constraints [Fletcher, 1991; Fxl- 
gar and ttimmelblau, 1989]. The mathematical equations vali- 
dated during the previous simulation phase serve as one of 
the equality constraints. The determination of the objective 
function and other constraints is subject to the purpose of op- 
timisation and characteristics of a given process. When con- 
straints and objective functions do not include time deriva- 
tives, it is defined as steady state optimisation; otherwise, 
dynamic optimisation IBiegler, 1984]. Optimi~tion gains more 
popularity in the design and optimal control area due to strong 
intemational competition and tighter environmental regulations. 

An operator training system is another area that can bene- 
fit from the unified framework of an equation-based appro- 
ach. An operator training system utilises the mathematical 
model and dynamic simulation facility in order to demonstrate 
dynamic responses to an operator as required. The details of 
a mathematical description of  a target process are usually o- 
mitted for an operator training system. This is due to the 
fact that the operator training system aims to educate opera- 
tors, and details of dynamic response are not a major con- 
cern. An operator training system inevitably incorporates a 
sophisticated user interface, which is very similar to actual 
working environments (e.g. monitoring system in digital con- 
trol system). 

Another possible application includes structural optimisation, 
which is described in terms of MINLP problems, parameter 
estimation, safety analysis. Fig. 7 depicts an equation-based 
approach in process systems engineering and its applications. 
2. Well-posedness of PDAEs 

Process modelling tools afford the user considerable flex- 
ibility both in model construction, and in the specification 
of degrees of freedom and initial conditions. The possibility 
therefore exists for the definition of problems which are eith- 
er badly posed (in the sense that they do not posses a well- 
defined mathematical solution), or impossible or difficult to 
solve using thc current state of solution techniques. 

/ ~ l " a t o r  t'~a-i-n ~ 'n 'g  ~ , S ~ y n a n l i c ~ "  ", ( 

s imulation / ~ system j . ;  

;" s teady s t a t e ' , ~  \,,. " (" safr , 
' \ . ~ m u l a t i o n  J \ - - :  ' " an .h ,s i s  ' 

~ . . . ; : ~ t h e m a t i c a l ~ - ~ . . : - - -  - ~ - ~ ' #  - J 
~ \  model .: 

, ' s t e a d y  slatc ~ : ,  ,~. parameter " , 
c . . . ~ . . . . .  opttmlsaUon / ,...'f-dynam~c'~-,~ '. estimation / 

" ' ~  - - -  " J "  .. optimisalion .? " ~  . . . . . . .  "' 

Fig. 7. Model based approach in unified framework of a mod- 
elling tool. 
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The detection and diagnosis of badly posed problems is 
mainly concerned with solvability, structural singularity, lo- 
cal singularity, high index and consistent initial conditions 
of a given system. Such a task exploits a sparsity pattern of 
the symbolic Jacobian or its variants of a given system. Part- 
ly due to sheer system size and partly to high non-linearity, 
it is already a difficult task to detect and diagnose well-pos- 
edness for systems of nonlincar algebraic equations and mix- 
ed ordinary differential and algebraic equations. 

For IPDAE systems, this task is much more complex. One 
of the important numerical methods currently used is the meth- 
od of lines, which discretises the variation over non-tem- 
poral domains and converts a given PDAEs into temporal 
DAEs. One of its main limitations is that they make no at- 
tempt at estimating and controlling the error incurred from 
such discretisation. Instead, they rely entirely on the user to 
select an appropriate method and grid. This sometimes in- 
troduces a significant discretisation error that is an order of 
magnitude bigger than that from time integration. Given the 
lack of a necessary mathematical framework, we probably have 
to rely mainly on analysis performed at the level of the DAE 
system resulting from discretisation, checking, for instance, 
the well-posedness of the system and its initial condition, and 
the index of the DAE system. 
3. Result Storage 

The powerful modelling capabilities of a modelling pack- 
age for dynamic simulation together with ever increasing com- 
putational speeds imply that the software is used to build and 
study increasingly complex problems involving variations over 
relatively large numbers of dimensions. From this new situ- 
ation, it is clear that much more needs to be achieved in re- 
ducing further the volume of results being stored without re- 
ducing the amount of information. 

The collection and storing of results as a fixed frequency 
ovcr long time horizons may be particularly wasteful. We 
note that the DAE integration packages used for solving the 
discretised IPDAE system utilisc sophisticated step-length ad- 
justment algorithms for traversing a given time horizon in the 
least number of stcps. Moreover, it is possible to reconstruct 
the entire solution trajectory from the values of the variables 
at these steps together with the order of integration at each 
step. It may therefore be advantageous to store results only 
at the steps used internally by the integrator. This will have 
the desirable side-effect of shifting some of the computatio- 
nal overhead (that associated with interpolating the results of 
the integration to produce the values of the variables at the 
fixcd reporting intcrvals) from the integrator to the results 
storing/visualisation system. The use of data compression tech- 
niques [see, for example, Hale and Sellars, 1981] is another 
possible means of reducing the volume of stored results. 

N O M E N C L A T U R E  

K : model constants 
A, B, C :components 

(;reek Letters 
~b : dimensionless concentration in reactor and mixer 

Lg 

17 

V 

0 

: dimensionless concentration in gas phase of absorber 
: dimensionless axial coordinates 
: dimensionless time 
: stoichiometric coefficient in reaction 
: dinaensionless concentration in liquid phase of absorber 

Subscript 
i : component i 

Superscripts 
e : exit 
f : feed 
m : mixer 
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